poniedziałek, 21 grudnia 2015

Galilean physics in six interesting statements and movies

Christoph Schiller, MOTION MOUNTAIN, the adventure of physics – vol.I, Fall, flow and heat.

The study of everyday motion, Galilean physics, is already worthwhile in itself: we will uncover many results that are in contrast with our usual experience.
For example, if we recall our own past, we all have experienced how important, delightful or unwelcome surprises can be. Nevertheless, the study of everyday motion shows that there are no surprises in nature.
Motion, and thus the world, is predictable or deterministic.
The main surprise of our exploration of motion is that there are no surprises in nature.

Nature is predictable. In fact, we will uncover six aspects of the predictability of everyday motion:
1. Continuity. We know that eyes, cameras and measurement apparatus have a finite resolution.  All have a smallest distance they can observe. We know that clocks have a smallest time they can measure. Despite these limitations, in everyday life all movements, their states, as well as space and time themselves, are continuous.
2. Conservation. We all observe that people, music and many other things in motion stop moving after a while. The study of motion yields the opposite result: motion never stops. In fact, three aspects of motion do not change, but are conserved: momentum, angular momentum and energy (together with mass) are conserved, separately, in all examples of motion. No exception to these three types of conservation has ever been observed. In addition, we will discover that conservation implies that motion and its properties are the same at all places and all times: motion is universal.
3. Relativity.We all know that motion differs from rest. Despite this experience, careful study shows that there is no intrinsic difference between the two. Motion and rest depend on the observer. Motion is relative. And so is rest. This is the first step towards understanding the theory of relativity.
4. Reversibility. We all observe that many processes happen only in one direction. For example, spilled milk never returns into the container by itself. Despite such observations, the study of motion will show us that all everyday motion is reversible. Physicists call this the invariance of everyday motion under motion reversal (or, sloppily, but incorrectly, under ‘time reversal’).
5. Mirror invariance. Most of us find scissors difficult to handle with the left hand, have difficulties to write with the other hand, and have grown with a heart on the left side. Despite such observations, our exploration will show that everyday motion is mirrorinvariant (or parity-invariant). Mirror processes are always possible in everyday life.
 6. Change minimization.We all are astonished by the many observations that the world offers: colours, shapes, sounds, growth, disasters, happiness, friendship, love.The variation, beauty and complexity of nature is amazing. We will confirm that all observations are due to motion. And despite the appearance of complexity, all motion is simple.

Our study will show that all observations can be summarized in a simple way:
Nature is lazy. All motion happens in a way that minimizes change. Change can be measured, using a quantity called ‘action’, and nature keeps it to a minimum. Situations – or states, as physicists like to say – evolve by minimizing change. Nature is lazy.
These six aspects are essential in understanding motion in sport, in music, in animals, in machines or among the stars.This first volume of our adventure will be an exploration of such movements. In particular, we will confirm, against all appearences of the contrary, the mentioned six key properties in all cases of everyday motion.

movies:
1. Types of Motion: movie
2. Earth's Magnetism:  movie1
    movie
3. Akatsuki movie
4. Keplers Law: movie
5. Projectile od motion: movie
6. Free fall  movie
7. Forces and Motion REVISION PODCAST movie


piątek, 18 grudnia 2015

Bryła sztywna

zad.1 . a) Oblicz stosunek energii kinetycznej ruchu obrotowego do postępowego dla kuli toczącej się bez poślizgu po równi pochyłej.
b) jakie będzie przyspieszenie kuli przy staczaniu się z równi o kącie nachylenia 45 stopni

zad.2 Oblicz moment bezwładności układu kul o promieniach R i masach m według rysunku:
zad.3 Oblicz siły nacisku belki na punkty podparcia, jeżeli masa belki wynosi 100 kg, jej długość 4 m, co przedstawia rysunek:
zad.4. Koło zamachowe o momencie bezwładności I = 0,2 kgm2 obraca się wokół poziomej osi przechodzącej przez jego środek, wykonując n = 600 obr/min. Przy hamowaniu koło zatrzymuje się po upływie czasu Δt = 20 s. Znajdź moment siły hamującej i liczbę obrotów do chwili zatrzymania.
odp: M = 0,2π Nm, N=100 obr.
zad.5. Na rurę o cienkich ściankach nawinięto nić, której wolny koniec przymocowano do sufitu. Rura odkręca się z nici pod działaniem własnego ciężaru (rys.). Znajdź przyspieszenie rury i siłę napięcia nici, jeżeli masę i grubość nici można zaniedbać. Początkowa długość nici jest dużo większa od promienia rury. Ciężar rury wynosi Q.
zad.6. Przez bloczek zawieszony na poziomej osi przerzucono nieważką i nierozciągliwą nić, do końców której przymocowano ciężarki o masach m1 = 0,5 kg i m2 = 0,2 kg. Masa bloczka wynosi m = 0,4 kg. Bloczek traktujemy jako jednorodny krążek. Znajdź liniowe przyspieszenie ciężarków. Przyjmij, że nić nie ślizga się po bloczku.
zad.7 Z równi pochyłej o kącie nachylenia α stacza się bez poślizgu ciało o momencie bezwładności I, masie m i promieniu r. Wyznacz jego przyspieszenie liniowe, kątowe i siłę tarcia.
zad.8. Pełne, jednorodne ciała: walec i kula staczają się bez poślizgu z równi pochyłej o kącie nachylenia α i wysokości h. Masy i promienie tych ciał są jednakowe. Które z nich stoczy się wcześniej?
zad.9. Kula o początkowej prędkości w ruchu postępowym v0 = 10 m/s wtacza się bez poślizgu na równię pochyłą o kącie nachylenia 45 st. Jaką drogę przebędzie kula po równi do chwili zatrzymania się i po jakim czasie wróci do podstawy równi?
zad.10. Środek masy kuli bilardowej posiada początkową prędkość v0. Promień kuli wynosi R, jej masa M, a współczynnik tarcia pomiędzy kulą i stołem jest równy µ. Jak daleko przesunie się kula po stole, zanim przestanie się ślizgać?
zad.11. W czasie pokazów gimnastyki artystycznej można oglądać ćwiczenie, w którym obręcz rzucona przez zawodniczkę tocząc się początkowo z poślizgiem wraca ku niej i w końcowej fazie ruchu toczy się już bez poślizgu. Jest to możliwe, jeżeli w czasie rzutu zawodniczka nada obręczy ruch obrotowy o odpowiednim kierunku. Znajdź związek pomiędzy początkową wartością prędkości ruchu postępowego v0 i prędkości kątowej ω0.
zad.12. Po idealnie gładkiej poziomej powierzchni ślizga się bez obrotów walec. Prędkość liniowa środka masy wynosi v0, a kierunek prędkości jest prostopadły do osi walca. W pewnej chwili powierzchnia pod walcem staje się szorstka, a współczynnik tarcia posuwistego przyjmuje wartość f. Po jakim czasie walec będzie się toczył bez poślizgu i jaka będzie wtedy prędkość jego środka masy?
zad.13. Kołowrót o masie m, momencie bezwładności I0 i promieniach zewnętrznym R oraz wewnętrznym r leży na płaszczyźnie poziomej (rys.). Na kołowrót nawinięta jest nić, do której przyłożono siłę F. Opisz ruch kołowrotu w zależności od kąta α jaki tworzy nić z kierunkiem poziomym.
zad.14. Ciężki walec o promieniu R i momencie bezwładności I0 wiruje z prędkością kątową ω0. W chwili t = 0 do dźwigni hamulcowej przyłożono siłę F (rys.) wskutek czego walec zatrzymuje się po czasie t. Ramiona dźwigni mają długości l1 i l2, a współczynnik tarcia między dźwignią i walcem wynosi f. Oblicz wartość siły F.
zad.15 * Walec o masie M i promieniu r może toczyć się po poziomym stole. Na walec nawinięta jest nieważka i nierozciągliwa nić, którą przerzucono przez nieważki bloczek. Na końcu nici zawieszono ciężarek o masie m (rys. ). Wyznacz przyspieszenie ciężarka i siłę tarcia działającą na walec przyjmując, że może być on pełen lub wydrążony (cienkościenna rura).
zad.16. Na krześle mogącym obracać się swobodnie wokół osi pionowej siedzi student i trzyma w wyprostowanych rękach odważniki po m = 5 kg każdy. Odległość każdego odważnika od osi obrotu wynosi l1 = 80 cm. Krzesło wiruje wykonując n1 = 1 obr/sek. Jak zmieni się szybkość wirowania studenta, jeśli zegnie on ręce tak, że odważniki będą w odległości l2 = 20 cm od osi obrotu? Moment bezwładności studenta i krzesła (całkowity) względem osi obrotu wynosi I0 = 3 kgm2.
zad.17.* Belka o długości l i masie M może swobodnie obracać się wokół poziomej osi przechodzącej przez jeden z jej końców. W drugi koniec belki uderza kula o masie m mająca poziomą prędkość v0 (rys.). Kula grzęźnie w belce. Znajdź prędkość kątową belki tuż po uderzeniu kuli. W jakie miejsce belki powinna uderzyć kula, aby składowa pozioma siły reakcji osi w chwili uderzenia wynosiła zero?
zad.18.* Na brzegu poziomej, okrągłej platformy o masie M i promieniu R stoi student o masie m. Platforma może obracać się bez tarcia wokół pionowej osi. Jaka będzie prędkość kątowa platformy ω, jeżeli student zacznie chodzić wzdłuż jej brzegu ze stałą względem niej prędkością v. Jaką drogę przebędzie student względem platformy w czasie jej jednego pełnego obrotu?
zad.19.* Samolot sportowy z jednym śmigłem lecący z prędkością v = 360 km/h wykonuje zakręt o promieniu r = 800 m. Oblicz moment sił wywierany przez śmigło na samolot, jeżeli moment bezwładności śmigła wykonującego n = 2400 obr/min wynosi I = 15 kgm2.
zad.20. Dane są dwie pełne kule A i B wykonane z tego samego materiału. Masa kuli A jest 8 razy większa od masy kuli B. Ile razy moment bezwładności kuli A jest większy od momentu bezwładności kuli B ? Moment bezwładności kuli I = 0,4mr2.