Bryła sztywna
zad.1 . a) Oblicz stosunek energii kinetycznej ruchu obrotowego do postępowego dla kuli toczącej się bez poślizgu po równi pochyłej.
b) jakie będzie przyspieszenie kuli przy staczaniu się z równi o kącie nachylenia 45 stopni
zad.2 Oblicz moment bezwładności układu kul o promieniach R i masach m według rysunku:
zad.3 Oblicz siły nacisku belki na punkty podparcia, jeżeli masa belki wynosi 100 kg, jej długość 4 m, co przedstawia rysunek:
zad.4. Koło zamachowe o momencie bezwładności I = 0,2 kgm2 obraca się wokół poziomej osi przechodzącej przez jego środek, wykonując n = 600 obr/min. Przy hamowaniu koło zatrzymuje się po upływie czasu Δt = 20 s. Znajdź moment siły hamującej i liczbę obrotów do chwili zatrzymania.
odp: M = 0,2π Nm, N=100 obr.
zad.5. Na rurę o cienkich ściankach nawinięto nić, której wolny koniec przymocowano do sufitu. Rura odkręca się z nici pod działaniem własnego ciężaru (rys.). Znajdź przyspieszenie rury i siłę napięcia nici, jeżeli masę i grubość nici można zaniedbać. Początkowa długość nici jest dużo większa od promienia rury. Ciężar rury wynosi Q.
zad.6. Przez bloczek zawieszony na poziomej osi przerzucono nieważką i nierozciągliwą nić, do końców której przymocowano ciężarki o masach m1 = 0,5 kg i m2 = 0,2 kg. Masa bloczka wynosi m = 0,4 kg. Bloczek traktujemy jako jednorodny krążek. Znajdź liniowe przyspieszenie ciężarków. Przyjmij, że nić nie ślizga się po bloczku.
zad.7 Z równi pochyłej o kącie nachylenia α stacza się bez poślizgu ciało o momencie bezwładności I, masie m i promieniu r. Wyznacz jego przyspieszenie liniowe, kątowe i siłę tarcia.
zad.8. Pełne, jednorodne ciała: walec i kula staczają się bez poślizgu z równi pochyłej o kącie nachylenia α i wysokości h. Masy i promienie tych ciał są jednakowe. Które z nich stoczy się wcześniej?
zad.9. Kula o początkowej prędkości w ruchu postępowym v0 = 10 m/s wtacza się bez poślizgu na równię pochyłą o kącie nachylenia 45 st. Jaką drogę przebędzie kula po równi do chwili zatrzymania się i po jakim czasie wróci do podstawy równi?
zad.10. Środek masy kuli bilardowej posiada początkową prędkość v0. Promień kuli wynosi R, jej masa M, a współczynnik tarcia pomiędzy kulą i stołem jest równy µ. Jak daleko przesunie się kula po stole, zanim przestanie się ślizgać?
zad.11. W czasie pokazów gimnastyki artystycznej można oglądać ćwiczenie, w którym obręcz rzucona przez zawodniczkę tocząc się początkowo z poślizgiem wraca ku niej i w końcowej fazie ruchu toczy się już bez poślizgu. Jest to możliwe, jeżeli w czasie rzutu zawodniczka nada obręczy ruch obrotowy o odpowiednim kierunku. Znajdź związek pomiędzy początkową wartością prędkości ruchu postępowego v0 i prędkości kątowej ω0.
zad.12. Po idealnie gładkiej poziomej powierzchni ślizga się bez obrotów walec. Prędkość liniowa środka masy wynosi v0, a kierunek prędkości jest prostopadły do osi walca. W pewnej chwili powierzchnia pod walcem staje się szorstka, a współczynnik tarcia posuwistego przyjmuje wartość f. Po jakim czasie walec będzie się toczył bez poślizgu i jaka będzie wtedy prędkość jego środka masy?
zad.13. Kołowrót o masie m, momencie bezwładności I0 i promieniach zewnętrznym R oraz wewnętrznym r leży na płaszczyźnie poziomej (rys.). Na kołowrót nawinięta jest nić, do której przyłożono siłę F. Opisz ruch kołowrotu w zależności od kąta α jaki tworzy nić z kierunkiem poziomym.
zad.14. Ciężki walec o promieniu R i momencie bezwładności I0 wiruje z prędkością kątową ω0. W chwili t = 0 do dźwigni hamulcowej przyłożono siłę F (rys.) wskutek czego walec zatrzymuje się po czasie t. Ramiona dźwigni mają długości l1 i l2, a współczynnik tarcia między dźwignią i walcem wynosi f. Oblicz wartość siły F.
zad.15 * Walec o masie M i promieniu r może toczyć się po poziomym stole. Na walec nawinięta jest nieważka i nierozciągliwa nić, którą przerzucono przez nieważki bloczek. Na końcu nici zawieszono ciężarek o masie m (rys. ). Wyznacz przyspieszenie ciężarka i siłę tarcia działającą na walec przyjmując, że może być on pełen lub wydrążony (cienkościenna rura).
zad.16. Na krześle mogącym obracać się swobodnie wokół osi pionowej siedzi student i trzyma w wyprostowanych rękach odważniki po m = 5 kg każdy. Odległość każdego odważnika od osi obrotu wynosi l1 = 80 cm. Krzesło wiruje wykonując n1 = 1 obr/sek. Jak zmieni się szybkość wirowania studenta, jeśli zegnie on ręce tak, że odważniki będą w odległości l2 = 20 cm od osi obrotu? Moment bezwładności studenta i krzesła (całkowity) względem osi obrotu wynosi I0 = 3 kgm2.
zad.17.* Belka o długości l i masie M może swobodnie obracać się wokół poziomej osi przechodzącej przez jeden z jej końców. W drugi koniec belki uderza kula o masie m mająca poziomą prędkość v0 (rys.). Kula grzęźnie w belce. Znajdź prędkość kątową belki tuż po uderzeniu kuli. W jakie miejsce belki powinna uderzyć kula, aby składowa pozioma siły reakcji osi w chwili uderzenia wynosiła zero?
zad.18.* Na brzegu poziomej, okrągłej platformy o masie M i promieniu R stoi student o masie m. Platforma może obracać się bez tarcia wokół pionowej osi. Jaka będzie prędkość kątowa platformy ω, jeżeli student zacznie chodzić wzdłuż jej brzegu ze stałą względem niej prędkością v. Jaką drogę przebędzie student względem platformy w czasie jej jednego pełnego obrotu?
zad.19.* Samolot sportowy z jednym śmigłem lecący z prędkością v = 360 km/h wykonuje zakręt o promieniu r = 800 m. Oblicz moment sił wywierany przez śmigło na samolot, jeżeli moment bezwładności śmigła wykonującego n = 2400 obr/min wynosi I = 15 kgm2.
zad.20. Dane są dwie pełne kule A i B wykonane z tego samego materiału. Masa kuli A jest 8 razy większa od masy kuli B. Ile razy moment bezwładności kuli A jest większy od momentu bezwładności kuli B ? Moment bezwładności kuli I = 0,4mr2.
b) jakie będzie przyspieszenie kuli przy staczaniu się z równi o kącie nachylenia 45 stopni
zad.2 Oblicz moment bezwładności układu kul o promieniach R i masach m według rysunku:
zad.3 Oblicz siły nacisku belki na punkty podparcia, jeżeli masa belki wynosi 100 kg, jej długość 4 m, co przedstawia rysunek:
zad.4. Koło zamachowe o momencie bezwładności I = 0,2 kgm2 obraca się wokół poziomej osi przechodzącej przez jego środek, wykonując n = 600 obr/min. Przy hamowaniu koło zatrzymuje się po upływie czasu Δt = 20 s. Znajdź moment siły hamującej i liczbę obrotów do chwili zatrzymania.
odp: M = 0,2π Nm, N=100 obr.
zad.5. Na rurę o cienkich ściankach nawinięto nić, której wolny koniec przymocowano do sufitu. Rura odkręca się z nici pod działaniem własnego ciężaru (rys.). Znajdź przyspieszenie rury i siłę napięcia nici, jeżeli masę i grubość nici można zaniedbać. Początkowa długość nici jest dużo większa od promienia rury. Ciężar rury wynosi Q.
zad.6. Przez bloczek zawieszony na poziomej osi przerzucono nieważką i nierozciągliwą nić, do końców której przymocowano ciężarki o masach m1 = 0,5 kg i m2 = 0,2 kg. Masa bloczka wynosi m = 0,4 kg. Bloczek traktujemy jako jednorodny krążek. Znajdź liniowe przyspieszenie ciężarków. Przyjmij, że nić nie ślizga się po bloczku.
zad.7 Z równi pochyłej o kącie nachylenia α stacza się bez poślizgu ciało o momencie bezwładności I, masie m i promieniu r. Wyznacz jego przyspieszenie liniowe, kątowe i siłę tarcia.
zad.8. Pełne, jednorodne ciała: walec i kula staczają się bez poślizgu z równi pochyłej o kącie nachylenia α i wysokości h. Masy i promienie tych ciał są jednakowe. Które z nich stoczy się wcześniej?
zad.9. Kula o początkowej prędkości w ruchu postępowym v0 = 10 m/s wtacza się bez poślizgu na równię pochyłą o kącie nachylenia 45 st. Jaką drogę przebędzie kula po równi do chwili zatrzymania się i po jakim czasie wróci do podstawy równi?
zad.10. Środek masy kuli bilardowej posiada początkową prędkość v0. Promień kuli wynosi R, jej masa M, a współczynnik tarcia pomiędzy kulą i stołem jest równy µ. Jak daleko przesunie się kula po stole, zanim przestanie się ślizgać?
zad.11. W czasie pokazów gimnastyki artystycznej można oglądać ćwiczenie, w którym obręcz rzucona przez zawodniczkę tocząc się początkowo z poślizgiem wraca ku niej i w końcowej fazie ruchu toczy się już bez poślizgu. Jest to możliwe, jeżeli w czasie rzutu zawodniczka nada obręczy ruch obrotowy o odpowiednim kierunku. Znajdź związek pomiędzy początkową wartością prędkości ruchu postępowego v0 i prędkości kątowej ω0.
zad.12. Po idealnie gładkiej poziomej powierzchni ślizga się bez obrotów walec. Prędkość liniowa środka masy wynosi v0, a kierunek prędkości jest prostopadły do osi walca. W pewnej chwili powierzchnia pod walcem staje się szorstka, a współczynnik tarcia posuwistego przyjmuje wartość f. Po jakim czasie walec będzie się toczył bez poślizgu i jaka będzie wtedy prędkość jego środka masy?
zad.13. Kołowrót o masie m, momencie bezwładności I0 i promieniach zewnętrznym R oraz wewnętrznym r leży na płaszczyźnie poziomej (rys.). Na kołowrót nawinięta jest nić, do której przyłożono siłę F. Opisz ruch kołowrotu w zależności od kąta α jaki tworzy nić z kierunkiem poziomym.
zad.14. Ciężki walec o promieniu R i momencie bezwładności I0 wiruje z prędkością kątową ω0. W chwili t = 0 do dźwigni hamulcowej przyłożono siłę F (rys.) wskutek czego walec zatrzymuje się po czasie t. Ramiona dźwigni mają długości l1 i l2, a współczynnik tarcia między dźwignią i walcem wynosi f. Oblicz wartość siły F.
zad.15 * Walec o masie M i promieniu r może toczyć się po poziomym stole. Na walec nawinięta jest nieważka i nierozciągliwa nić, którą przerzucono przez nieważki bloczek. Na końcu nici zawieszono ciężarek o masie m (rys. ). Wyznacz przyspieszenie ciężarka i siłę tarcia działającą na walec przyjmując, że może być on pełen lub wydrążony (cienkościenna rura).
zad.16. Na krześle mogącym obracać się swobodnie wokół osi pionowej siedzi student i trzyma w wyprostowanych rękach odważniki po m = 5 kg każdy. Odległość każdego odważnika od osi obrotu wynosi l1 = 80 cm. Krzesło wiruje wykonując n1 = 1 obr/sek. Jak zmieni się szybkość wirowania studenta, jeśli zegnie on ręce tak, że odważniki będą w odległości l2 = 20 cm od osi obrotu? Moment bezwładności studenta i krzesła (całkowity) względem osi obrotu wynosi I0 = 3 kgm2.
zad.17.* Belka o długości l i masie M może swobodnie obracać się wokół poziomej osi przechodzącej przez jeden z jej końców. W drugi koniec belki uderza kula o masie m mająca poziomą prędkość v0 (rys.). Kula grzęźnie w belce. Znajdź prędkość kątową belki tuż po uderzeniu kuli. W jakie miejsce belki powinna uderzyć kula, aby składowa pozioma siły reakcji osi w chwili uderzenia wynosiła zero?
zad.18.* Na brzegu poziomej, okrągłej platformy o masie M i promieniu R stoi student o masie m. Platforma może obracać się bez tarcia wokół pionowej osi. Jaka będzie prędkość kątowa platformy ω, jeżeli student zacznie chodzić wzdłuż jej brzegu ze stałą względem niej prędkością v. Jaką drogę przebędzie student względem platformy w czasie jej jednego pełnego obrotu?
zad.19.* Samolot sportowy z jednym śmigłem lecący z prędkością v = 360 km/h wykonuje zakręt o promieniu r = 800 m. Oblicz moment sił wywierany przez śmigło na samolot, jeżeli moment bezwładności śmigła wykonującego n = 2400 obr/min wynosi I = 15 kgm2.
zad.20. Dane są dwie pełne kule A i B wykonane z tego samego materiału. Masa kuli A jest 8 razy większa od masy kuli B. Ile razy moment bezwładności kuli A jest większy od momentu bezwładności kuli B ? Moment bezwładności kuli I = 0,4mr2.
Komentarze (0):
Prześlij komentarz
Subskrybuj Komentarze do posta [Atom]
<< Strona główna